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Negative Heat Capacity for a Cluster of 147 Sodium Atoms
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There exists a surprising theoretical prediction for a small system: its microcanonical heat capacity can
become negative. An increase of energy can — under certain conditions —lead to a lower temperature.
Here we present experimental evidence that a cluster containing exactly 147 sodium atoms does indeed
have a negative microcanonical heat capacity near its solid to liquid transition.
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Every day experience tells us that if one adds energy to
a system it will get warmer. But negative heat capacities
have long since been known in astrophysics [1,2], where
energy can be added to a star or star cluster which then
cools down. A similar effect has been calculated for melt-
ing atomic clusters [3,4] and fragmenting nuclei [5]; in the
latter case it has been observed as well [6].

We have recently developed a method to study thermal
properties of free, mass selected clusters [7–11]. Briefly,
photofragmentation is used to measure the internal energy
of clusters with known temperature. The experimental pro-
cedure can be divided into two steps: (1) Cluster ions are
produced in a gas aggregation source and thermalized in
helium gas of controlled temperature T , which represents
an ideal heat bath. A mass spectrometer is used to select
a single cluster size. This prepares clusters of known size
and known temperature T . (2) These clusters are irradi-
ated by a laser beam. They absorb photons of well defined
energy, which leads to stepwise increase of the internal en-
ergy of the cluster and eventually to evaporation of several
atoms. A second mass spectrometer measures the distribu-
tion of the fragments produced, which has a characteristic
shape as shown in Fig. 1. Different numbers of absorbed
photons lead to clearly separated groups of fragments in
the mass distribution. The number of evaporated atoms
depends on the total inner energy of the cluster, which is
the sum of the original thermal energy plus the energy of
the absorbed photons. If the temperature of the heat bath is
varied, the inner energy of the selected cluster changes and
thus also the number of evaporated atoms. The fragment
groups shift on the mass scale as shown in Fig. 2. This
allows one to determine the caloric curve and its deriva-
tive, the heat capacity. This form of data evaluation is an
improvement of the one used earlier [7–9,12] and is de-
scribed in [13].

For the determination of the caloric curves we have used
so far only the positions of the fragment groups. As will
become obvious from the discussion below, a negative heat
capacity cannot be observed in this case. One thus needs
more information, which can be obtained from the mea-
sured fragment distributions. In fact, the fragment group
envelopes are maps of the energy distribution, as indicated
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in Fig. 1. As the clusters have been thermalized in a heat
bath, they have a canonical distribution of inner energies
PT �E� which is proportional to the number of accessible
states V�E� times the Boltzmann factor [14]:

FIG. 1. The energy distribution of a free cluster can be
obtained from its photofragmentation mass spectrum. In the
experiment a Na1

147 cluster ejects atoms after absorption of
several photons. The intensity of the charged fragments is
plotted against the number of evaporated atoms. Without
laser interaction one observes only the large peak on the left,
corresponding to the intact Na1

147. For four absorbed photons
one has an approximately Gaussian distribution centered around
nine evaporated atoms. For five (six) absorbed photons the
Gaussian would be centered near 13 (17) ejected atoms. The
distance between the maxima of the Gaussians corresponds to
exactly one photon energy, which provides an energy calibration
of the mass scale. The more energy a cluster carries before
photoexcitation the more atoms it will evaporate afterwards.
Thus, the mass distribution (thick solid line) corresponding to
a fixed number of absorbed photons is a map of its internal
energy distribution PT �E�, as shown in the inset. As the cluster
has been thermalized in a heat bath, PT �E� is a canonical
energy distribution as given by Eq. (1).
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FIG. 2 (color). Plotting the envelope of the fragment mass in-
tensities of Fig. 1 as a function of the cluster’s temperature gives
a two-dimensional presentation of the primary data (red, high
intensity). The progression of the intensity maxima represents
a smoothed microcanonical caloric curve (white solid line, see
text and Fig. 3 for details). Heat capacity, melting temperature,
and latent heat q can be deduced. Because of an experimental
broadening effect the backbending (dotted line) is smoothed out.

PT �E� ~ V�E� exp�2E�kBT� � exp�S�kB 2 E�kBT � ,
(1)

where S � kB ln�V� is the entropy of the system.
The function PT �E� carries the full thermodynamical in-

formation. Both canonical and microcanonical thermody-
namics can be derived from it. The canonical caloric curve
is a plot of the mean energy �E� �

R
EPT �E� dE against

the heat bath temperature T . This curve is strictly monoto-
nously increasing. Its heat capacity is thus always positive
as can be proven analytically [1,2,14,15].

The microcanonical caloric curve is defined differently.
It is the curve one would obtain if one measures the tem-
perature of an isolated cluster (using an infinitesimally
small thermometer) as a function of its energy. As clusters
with a range of energies leave the source, they have also a
range of microcanonical temperatures Tm. Differentiating
Eq. (1) with respect to the energy, one sees that the condi-
tion for an extremum of PT �E� is identical to the definition
[14] of Tm:

T � �≠S�≠E�21 � Tm . (2)

Thus, if the canonical energy distribution PT �E� has an ex-
tremum at energy Eext then the corresponding Tm equals
T . In other words, a cluster with energy Eext has a micro-
canonical temperature equal to T . One can thus obtain the
microcanonical caloric curve by plotting Eext against the
heat bath temperature T , which can be done from the data
given in Fig. 2.

Normally the difference between the canonical and the
microcanonical caloric curve is minute. Far from a phase
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transition the distribution PT �E� is nearly Gaussian (see
inset of Fig. 1) and thus the mean energy �E�T �� and the
most probable energy Eext�T� are almost identical.

This is not true any more near a phase transition. The en-
tropy S�E� of a small system can exhibit a curious structure
here, a dent with an inverted curvature as shown in Fig. 3.
This structure has been predicted by theory and has been
observed in many numerical simulations [3–5,16,17]. The
inverted curvature of the entropy has two interesting conse-
quences (cf. Fig. 3): (1) The microcanonical caloric curve
Tm�E� gets a negative slope (colloquially called backbend-
ing), which means that the corresponding heat capacity
becomes negative. (2) The canonical energy distribution
PT �E� shows a bimodal structure [17,18].

FIG. 3. Three quantities are plotted as a function of the inner
energy of a cluster, illustrating different manifestations of the
same phenomenon (q is the latent heat, Tm the melting tempera-
ture). Top: The total entropy S�E� having an inverted curvature
dent (arrow), which is strongly exaggerated here. Such a struc-
ture is theoretically expected for a small particle. Middle: A
backbending microcanonical caloric curve. The heat capacity
becomes negative in the region with the negative slope. Bot-
tom: The energy distribution PT �E� [see Eq. (1)] of a cluster en-
semble close to its melting temperature. Because of the inverted
curvature of the entropy the distribution becomes bimodal.



VOLUME 86, NUMBER 7 P H Y S I C A L R E V I E W L E T T E R S 12 FEBRUARY 2001
Since PT �E� is mapped onto the shape of the fragment
groups, these should become bimodal, too. An observa-
tion of the bimodality would therefore be a direct proof
of a negative heat capacity. Fragment distributions were
studied in detail for Na1

147, a cluster for which the effect of
a negative heat capacity can be expected to be particularly
pronounced due to its very high latent heat [8,9,17]. Un-
fortunately, the bimodality could not be observed directly,
as there are broadening mechanisms in the fragmentation
process which just smear out these details [19]. We thus
had to apply a trick which enhances the modulation of the
fragment spectra: for a certain photon energy the over-
lap of adjoining fragment groups produces a pattern which
allows one an unambiguous decision whether or not the
microcanonical caloric curve shows backbending.

This will be discussed with the help of Fig. 4. Its top line
shows three examples of model (microcanonical) caloric
curves. They are identical except at the transition itself.
The middle column of Fig. 4 shows the steplike progres-
sion of macroscopic systems. On the left side a smoothed
out caloric curve is shown, and in the right column the
backbending progression as suggested by Fig. 3 and the
arguments given above. Using Eqs. (1) and (2), one can
calculate the corresponding energy distributions PT �E� at
the melting temperature Tm, which are shown in the sec-
ond row of Fig. 4. In the case of the steplike caloric curve
the distribution is Gaussian on the rising and falling edges
and completely flat at the top. The width of the hatched
rectangle which has the same area as PT �E� is given by

G � T
p

2pkBc 1 q . (3)

The first term is due to the canonical energy distribution
[14] at temperature T , and c is the heat capacity ≠E�≠T
in the vicinity of the transition. The latent heat q is equal
to the horizontal part of the caloric curve, as indicated in
the middle column of Fig. 4.

In order to simulate the photofragment spectra, the dis-
tributions for different numbers of absorbed photons are
added and then smoothed to account for the broadening due
to the fragmentation process. This gives the fragmentation
pattern (grey curve) shown in the second line. The third
line of Fig. 4 shows the corresponding calculated tempera-
ture dependence.

If now the photon energy nearly equals G, the fragment
mass spectrum becomes structureless near Tm if the caloric
curve is steplike. For any kind of smoothed out step in the
caloric curve (left column in Fig. 4) the energy distribu-
tions are sharper and stay just separable even at Tm. In the
case of a backbending caloric curve the energy distribu-
tion becomes bimodal and thus broader than in the case of
the steplike curve. The calculated temperature dependence
of the fragment mass spectra (third row of Fig. 4) show
qualitatively different patterns for the cases of smoothed
out or backbending caloric curves; i.e., the line joining the
fragment group maxima shows a bend either to the right
or to the left. This difference is influenced neither by the
FIG. 4 (color). For a certain photon energy the bimodal en-
velopes of the photofragment groups can be made visible even
in mass spectra strongly smoothed by the photofragmentation
process, as is demonstrated here. The three caloric curves in the
upper line agree in their latent heat q, melting temperature Tm, as
well as the heat capacity in the vicinity of the transition, but they
show a different behavior near Tm. The corresponding energy
distributions are shown in red (and dotted black) in the second
line, and the calculated fragmentation patterns in the third line.
If the photon energy hn is now chosen to be nearly equal to the
width G of the energy distribution of the steplike caloric curve,
all structure in the fragment spectrum vanishes near Tm (middle
column). In contrast, any backbending caloric curve leads to
the characteristic pattern shown in the right column which is
clearly different from the pattern of a smoothed out curve (left
column). The lower figure shows the experimental data at the
decisive photon energy of 3.41 eV. Only the pattern of a back-
bending caloric curve is reconcilable with the experiment.

experimental broadening nor by the specific shape of the
backbending or smoothed caloric curves.

In order to do this special measurement one has to know
G. We thus first measure data fields similar to those of
Fig. 2 for different photon energies, and extract from them
the melting temperature Tm, heat capacity c, and latent
heat q. For Na1

147 this gives G � 3.27 6 0.14 eV from
Eq. (3). Then choosing a photon energy slightly higher
than G, we remeasure the data set around Tm. If now
the maxima in the data set bend to the left — like in the
right column of Fig. 4— the energy distributions must be
bimodal. This can indeed be seen in the experimental
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data for hn � 3.41 eV, shown in the lowest row of Fig. 4.
Thus Na1

147 has an entropy with an inverted curvature and
consequently a negative heat capacity in the energy range
of the phase transition. A quantitative estimate for this heat
capacity can be obtained from a least squares fit [19] to the
data: at the melting temperature an increase of the internal
energy of Na1

147 by 1 eV leads to a concomitant decrease
in temperature by about 10 K.

How can this negative heat capacity be interpreted?
Upon melting, a large system converts added energy com-
pletely into potential energy, reducing continuously the
fraction of its solid phase. The kinetic energy and thus
the temperature remain constant. A small system, on the
other hand, tries to avoid partly molten states and prefers
to convert some of its kinetic energy into potential energy
instead. Therefore the cluster can become colder, while its
total energy increases.

Negative heat capacities have now been found for melt-
ing clusters, fragmenting nuclei, and astronomical objects.
What do these widely different systems have in common?
The answer is that in these systems energy is not an exten-
sive quantity; i.e., if such a system is divided into arbitrary
subsystems the total energy is not simply the sum over the
subsystems. The interaction between the subsystems has
to be taken into account [2,14,15]. For example, in stars
it is impossible to neglect the gravity between parts of the
system [1,2]. Similarly in clusters and nuclei the inter-
action between subsystems is not negligible due to their
small size.
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